
Ark: A UTXO-based Transaction Batching Protocol

Marco Argentieri1, Zeta Avarikioti2, Andrew Camilleri1, Pim Keer2, and Matteo Maffei2

1Ark Labs
2TU Wien

Abstract

Ark is a novel scaling protocol for Bitcoin that enables offchain transaction execution while allow-
ing users to keep full custody of their funds. This is made possible through the introduction of Virtual
UTXOs (VTXOs), which allow users to transact offchain while retaining the ability to unilaterally
exit to the Bitcoin mainchain. Coordinated by an operator who batches user activity into onchain
commitments, Ark achieves high transaction throughput with a minimal onchain footprint, offering
a simple and accessible scaling solution for Bitcoin, and can accommodate layer-2 constructions that
would be too inefficient or costly to execute on the Bitcoin mainchain.

Contents

1 Introduction 2
1.1 Contributions . 2

2 Overview 2
2.1 Assumptions . 3
2.2 Protocol Overview . 3
2.3 Security and Scalability Properties . 4

3 Background 5
3.1 The Unspent Transaction Output (UTXO) Model . 5
3.2 Covenants . 7

4 Ark Construction 7
4.1 Transaction Batching . 8
4.2 Ark transactions . 9
4.3 Batch Swaps . 9
4.4 Commitment transactions . 10
4.5 Boarding and leaving the Ark . 11
4.6 Protocol operations . 12

5 Security and Scalability Considerations 12

6 Applications 13

7 Discussion and Limitations 14

8 Conclusion 15

A Preconfirmation 15

B Protocol Operations and Transaction Dependencies 17

1

1 Introduction

Bitcoin’s base layer offers strong security guarantees but limited throughput, making it unsuitable for
everyday transactional use at scale. To address this, multiple scaling solutions [8, 6, 9] have been proposed
to facilitate offchain transactions with lower latency and reduced fees. There seems to be, however, an
inherent trade-off between the solution’s ability to move transaction processing offchain, minimising its
onchain footprint, providing a favourable user experience, and being fully non-custodial.

For example, the Lightning Network [8] is a network of payment channels, where each channel is
essentially an onchain output held by the two channel parties. Many operations in the Lightning Network,
and other payment channel constructions [4, 2] for that matter, such as user onboarding and liquidity
management, require onchain activity. Moreover, channel participants need to constantly monitor the
blockchain in order to protect against a potentially misbehaving counterparty.

Sidechains like Liquid [6] can move arbitrary amounts of execution off the Bitcoin mainchain, but
rely on a federation of custodians that hold on to the bitcoins of users operating within the sidechain.

Finally, shared UTXO protocols like CoinPool [5]—apart from requiring Bitcoin protocol updates—
require onchain activity for onboarding, as well as all pool participants being available to update the
state of the pool.

Ark aims to strike a balance between the different extremes of this trade-off by offering an efficient
way to batch many transactions into a single onchain output. This is achieved by having a single co-
ordinating entity—an operator—who aggregates user activity into onchain commitment transactions.
These transactions compactly encode offchain transactions, user entries and exits, and settlement logic,
resulting in a verifiable system with a minimal onchain footprint. This mechanism is, moreover, en-
tirely trustless due to the use of connectors. The offchain transactions follow a similar logic as onchain
transactions, through the use of a novel abstraction called virtual UTXOs (VTXOs), which represent of-
fchain, spendable balances with unilateral exit options. This design enables flexible and scalable offchain
transactions with significantly reduced coordination overhead. In particular, Ark enables the lifting of
aforementioned constructions to an offchain setting, complementing existing scaling solutions by allowing
them to operate with a minimal onchain footprint.

In this litepaper, we present an overview of the Ark protocol, describe its core components and
transaction flow, and highlight the design principles that enable efficient transaction batching on Bitcoin.
Finally, we explore some of the use cases that Ark enables, and conclude with a number of directions for
future research.

1.1 Contributions

This litepaper introduces the Ark protocol and outlines its key design features:

• Virtual UTXOs (VTXOs): A novel abstraction enabling offchain transactions while allowing
holders to keep custody of their funds at all times.

• Minimal onchain footprint: Ark scales by batching user transactions into onchain commitment
transactions, reducing the onchain cost to a constant in the optimistic case, regardless of the
number of offchain transactions.

• Unilateral exit guarantees: Every user can independently exit the protocol and reclaim their
funds. The exit cost is logarithmic in the number of offchain transactions in the batch containing
the user’s funds.

Together, these features position Ark as a simple, scalable, and user-friendly transaction batching
protocol that enables the efficient and secure aggregation of multiple offchain transactions into one
onchain output, opening the doors to many scaling solutions previously infeasible to run on Bitcoin.

2 Overview

In this section, we give a high-level overview of the Ark protocol and what it enables. Also, we discuss
in which model, and under which assumptions, we study the protocol and its security and scalability
properties.

2

2.1 Assumptions

Throughout this text, we operate under the following assumptions.

Cryptographic assumptions. We assume there are secure communication channels between partic-
ipants, as well as cryptographically secure hash functions, signature schemes and encryption schemes.
Moreover, all protocol participants are computationally bounded.

Blockchain assumptions. The Ark protocol runs on top of the Bitcoin blockchain. Users of Bitcoin
can submit transactions as inputs to this blockchain, which then outputs an immutable ledger in which the
inputted transactions are ordered. We model the Bitcoin blockchain according to the Bitcoin backbone
protocol [3].

Network model. We assume a synchronous network. We distinguish between the Ark users and the
Ark operator. The users are assumed to come online periodically with period To, whereas the operator
is assumed to be online at all times.

2.2 Protocol Overview

Ark is a transaction batching protocol for Bitcoin that enables multiple users to transact offchain with a
minimal onchain footprint. To facilitate this, at a high level, a user can first enter the Ark by spending
bitcoin via a specific boarding transaction, receiving one or multiple virtual transaction outputs (VTXOs)
in return, enabling the user to transact within the system. These offchain transactions, facilitated by
the Ark operator, are very similar to onchain transactions, spending VTXOs and creating new VTXOs.
Finally, users can leave the Ark by redeeming their funds back to the Bitcoin blockchain.

A crucial role in most of these operations is played by the Ark operator, who has three main respon-
sibilities:

• Liquidity provision: Supplying the funds needed to operate the Ark by effectively lending capital
to users and earning fees in return.

• Batching: Collecting requests from current and prospective users to create commitment transac-
tions, which include batches that facilitate user onboarding, transfers, and exits.

• Signing: Collaborating with users to finalise transactions within the Ark, including the signing of
batches.

We showcase all the components of the Ark protocol in Figure 1. In this example, a user, Alice,
boards the Ark, makes a simple offchain transaction to another user, Bob, and later exits the Ark
collaboratively with the operator. Some time later, Bob also wishes to exit, but the Ark operator has
crashed, requiring Bob to exit unilaterally. Keep in mind that Ark’s scaling potential comes from the—in
theory—arbitrarily large number of VTXOs that can be contained within a single output (batch) of a
commitment transaction. We distinguish the following protocol components:

Running the Ark. The Ark operator can run an Ark by broadcasting so-called commitment transac-
tions. These transactions are mostly funded by the Ark operator’s own funds and specify, through the
use of batches as its transaction outputs, a set of VTXOs created within the Ark. We discuss in detail
the structure and spending conditions of these transaction outputs in Section 4.4.

Transacting within the Ark. New VTXOs can be created by Ark transactions. This is done by
collaborating with the Ark operator to construct an offchain (i.e., virtual) transaction that spends existing
VTXOs and outputs new VTXOs. Such Ark transactions are simply Bitcoin transactions, with specific
locking scripts on the outputs.

Batch swapping. Users can swap VTXOs from previous batches or created by Ark transactions into
fresh VTXOs encapsulated in a batch of a new onchain commitment transaction. To do so, the user will
forfeit the current VTXO, meaning that the Ark operator can claim it in case VTXO ever goes onchain
and becomes a UTXO. In return, the operator will include a fresh VTXO in the next commitment
transaction. In Section 4.3, we describe how both steps can happen atomically through the use of
connectors.

3

Boarding the Ark. To board the Ark, a user Alice creates a boarding transaction, which is funded
by Alice’s own funds, and has one UTXO that can only be spent by Alice together with the Ark operator
or alone by Alice after a timelock. As soon as this transaction is included onchain, Alice will contact the
Ark operator, who can then include the UTXO to (partially) fund the next commitment transaction.
Alice will now have a VTXO, which she can use to transact within the Ark. This VTXO can be turned
into an actual UTXO at all times, but will be held offchain as long as necessary.

Leaving the Ark. After a while, Alice wants to retrieve a VTXO from the Ark and turn it into
a UTXO. Just as if she would batch swap her VTXO, Alice forfeits her current VTXO, but instead of
constructing a new set of VTXOs, the Ark operator will add an additional output to the next commitment
transaction that can be spent by Alice only. If the Ark operator is unresponsive whenever, say, Bob
wants to exit the Ark, he can still do so by spending from the corresponding output of the commitment
transaction his VTXO is in. We elaborate on this in Section 4.5.

Commitment

transaction

Batch(es)

of VTXOs

Specifies

Commitment

transaction

Batch(es)

of VTXOs

Specifies

Commitment

transaction

Specifies

Batch(es)

of VTXOs

Operator

Alice

Bob

Time

UTXO

Boarding

Alice pays Bob

virtually

VTXO

...

Swap

VTXO

Exit

cooperatively
VTXO

Change

output
UTXO

UTXO
Exit

unilaterally

Output

Contains

Contains

VTXO

Figure 1: A general flow within the Ark protocol.

2.3 Security and Scalability Properties

As with Bitcoin, Ark transactions achieve finality only upon inclusion in an onchain block. Once a trans-
action is incorporated into a batch and anchored via a corresponding Commitment Transaction, the Ark
protocol can be shown to satisfy a number of security and scalability properties under certain assump-
tions on the operator’s behaviour. In particular, we consider both a rational operator, who will only
deviate from the protocol if it increases its profits, and a malicious operator, who may arbitrarily deviate
from the protocol. Below, we list the six properties the Ark protocol satisfies under the assumption of a
rational operator.

(NS) Ark Onramp Safety: One cannot obtain a VTXO without spending onchain funds through a
boarding transaction.

(NL) Ark Onramp Liveness: If one spends onchain funds through a boarding transaction, then either
a VTXO is obtained, or the onchain funds are returned.

(AS) Ark Safety: Ark participants cannot double-spend confirmed VTXOs.

(AL) Ark Liveness: Any valid transaction submitted by an Ark user to the Ark operator will be
confirmed within some time.

(FS) Ark Offramp Safety: One cannot claim Ark funds onchain without forfeiting or publishing
onchain the corresponding VTXO.

4

(FL) Ark Offramp Liveness: If one correctly forfeits1 or publishes2 an unspent VTXO that has not
yet expired, then one will claim the corresponding Ark funds onchain or retain the VTXO until
expiry.

Assuming a malicious operator, the Ark protocol only satisfies (NL) and (FL). However, the violations
of (NS), (AS) and (FS) will never lead to a loss of funds for Ark users that follow the protocol. This is
also summarised in Table 1.

Table 1: Security properties of the Ark protocol under a rational and malicious operator assumption. A
star ∗ indicates that although the property is not fulfilled, the violations of the property come only at
the cost of the operator, and not of users following the protocol.

Operator (NS) (NL) (AS) (AL) (FS) (FL)
Rational ✓ ✓ ✓ ✓ ✓ ✓
Malicious ∗ ✓ ∗ ∗ ✓

Under the assumption of a rational operator, we could eventually show that the six properties men-
tioned above imply that the Ark protocol is balance secure, as long as To < Te, where Te is the batch
expiry set by the operator. That is, any participant who follows the Ark protocol, being a user or an
operator, is able to exit the protocol without losing funds (other than fees) that have been confirmed to
be theirs.

Regarding scalability, and again, assuming a rational Ark operator, the Ark protocol has a:

• Constant execution cost: Executing the Ark protocol has an O(1) onchain footprint.

• Constant exit cost (optimistic): Assuming that the operator is online and behaves according
to the protocol, an Ark user can exit the Ark with O(1) transactions.

• Logarithmic exit per-VTXO cost (pessimistic): In the worst case, an Ark user can exit a
VTXO from the Ark with O(log t) transactions, where t is the number of VTXOs contained in the
corresponding batch.

3 Background

Already in the previous section, we used the terms UTXO and VTXO several times. By construction,
the Ark protocol inherits Bitcoin’s UTXO model. In this section, we elaborate on the UTXO model and
introduce the necessary notation. We mostly follow the notation of Aumayr et al. [1]. Afterwards, we
introduce within this UTXO model several components that are essential to the construction of the Ark
protocol.

3.1 The Unspent Transaction Output (UTXO) Model

The Bitcoin blockchain follows an unspent transaction output (UTXO) model. Let us denote the Bitcoin
ledger by L, and let U be a user of the ledger. This user has a secret-public key pair (skU , pkU), and can
use its secret key to produce, for an arbitrary message m ∈ {0, 1}∗, a signature σU (m).

The ledger L is made up of transactions. In the UTXO model, each transaction tx maps a non-
empty list of existing unspent transaction outputs, UTXOs for short, to a list of new UTXOs. Such a
transaction output is defined as a tuple out := (value, lockScript) with out.value ∈ 10−8N∪{0}3 the
amount of bitcoins (B) held by out and out.lockScript the locking script. This locking script specifies
the conditions that need to be satisfied in order to use this output in a new transaction to move the coins
to a new output. We can then view the old output as an input in := (prevTx, ind, lockScript), where
prevTx is the already existing transaction containing the old output and ind the index of the output
within prevTx. We slightly abuse notation and write in.value to denote the value of the corresponding
output, i.e., in.value = ini.prevTx.outputs[ini.ind].value, where we denote the i-th element of a list
list by list[i].

1That is, first verifies that the commitment transaction that contains the connector also has a UTXO with the correct
amount and locking script.

2That is, the corresponding virtual transactions.
3Keep in mind that the smallest amount of Bitcoin is a satoshi: 1B = 108 satoshis. We ignore any technicalities on the

maximum value of an output.

5

Hence, we can formally write a transaction as a tuple tx := (inputs, witnesses, outputs). Here,
tx.inputs := [in1, . . . , inn] is the list of n transaction inputs, tx.outputs := [in1, . . . , inm] the list of
m transaction outputs, and tx.witnesses := [w1, . . . , wn] the list of n witnesses. For i ∈ {1, . . . , n}, wi
is the witness data that serves as an input to the locking script ini.lockScript. Only if the locking
script outputs True, i.e. ini.lockScript(wi) = True, do we consider the spending condition fulfilled
and can the UTXO ini be spent. We say that the transaction is valid only if every transaction input is
unspent, every witness leads to a successful execution of the corresponding locking script, and the sum
of coins in the inputs is greater than or equal to the sum of coins in the outputs, i.e.,

∑n
i=1 ini.value ≥∑m

j=1 outj .value.
The locking scripts are expressed in the stack-based Bitcoin scripting language. These scripts can

become quite complex, but we can distinguish a number of fundamental building blocks used throughout
this paper.

• Signature locks. An output can be locked by checkSigpkU
, meaning that it can only be spent if

the transaction spending this output is signed with the corresponding secret key skU .

• Multi-signature locks. In order to spend an output locked with a k-of-n multi-signature lock
checkMultiSigk,n;pkU1

,pkU2
,...,pkUk

, one needs to provide k out of n signatures for the spending

transaction.

• Timelocks. Outputs can be locked temporarily. This can either be done until a specified block
height T with an absolute timelock absTimelock(T), or after a specified number of blocks t after
the transaction is included onchain, using a relative timelock relTimelock(t).

• Other conditions. We can denote by True and False conditions that are always and never
fulfilled, respectively. The False condition can be used to indicate that coins are burned, i.e.,
rendered unspendable.

Remark 3.1. Signature locks can be unlocked by providing a signature of the spending transaction with
the appropriate secret key. With the use of SIGHASH flags, one can specify which parts of the transaction
should be signed. For example, a SIGHASH ALL flag signs all inputs and all outputs, meaning that mod-
ifying the transaction in any way would render the signature invalid. However, using a SIGHASH NONE

flag only signs the transaction inputs, so one can modify the transaction outputs without changing the
signature. As we discuss in Section 4.3, the SIGHASH ALL flag enables us to create connectors, effectively
conditioning the validity of one transaction on another transaction being included onchain.

We express more complex scripts in terms of these building blocks and logical operators, as well as other
expressions available in Bitcoin Script. Finally, since the Taproot protocol upgrade, it is also possible to
have a locking script made up solely of a tweaked public key, that can either be unlocked by providing a
Schnorr signature by the appropriate public key, or by satisfying one of the locking scripts that has been
committed to in that tweaked public key. This allows an output to have multiple spending conditions,
while only revealing one of these spending conditions when the output is spent. This is achieved by
bringing together the different spending conditions into one Merkle tree. The Merkle root of this tree is
then used together with an internal public key pkI to create the actual locking script of the output, which
will be the tweaked public key. The output can then be spent either (i) via the key path (if enabled),
providing just a signature corresponding to the tweaked public key, or (ii) via a script path. In the
latter case, the output is spent by satisfying just one of the spending conditions in the tree, as well as
providing a Merkle inclusion proof of that script in the Merkle tree. We denote a Taproot locking script
as Taproot(pkI;scriptPath1,. . .,scriptPathn), where pkI is the internal public key. If the key path
is unspendable, we replace pkI by False.

As mentioned earlier, Taproot makes use of Schnorr signatures. These have several advantages over
Bitcoin’s ECDSA signatures. For our purposes, Schnorr signatures allow for the efficient multi-signature
scheme Musig2 [7]. This scheme enables multiple parties, each with their own individual private key, to
collaboratively produce signatures corresponding to an aggregate public key. These signatures can only be
created if all parties cooperate, effectively yielding a n-of-n multi-signature locking script. For n parties
with public keys pk1, . . . , pkn, we denote the aggregate public key by

⊕n
i=1 pki and a corresponding

signature as σ⊕n
i=1 pki

. Furthermore, for a Taproot locking script which checks whether a valid signature

under
⊕n

i=1 pki is provided, we simply write checkSig⊕n
i=1 pki

.

6

3.2 Covenants

Covenants are special locking scripts that allow an output to be spent only in a specific way. A simple
example of a covenant would be an n-of-n multi-signature output script, in which the n signers agree to
only sign transactions that spend the output in a prearranged way. Note that this covenant relies on at
least 1 out of the n signers to stick to the arrangement. New opcodes in Bitcoin Script, such as OP CTV or
OP CAT, would allow for stronger covenants that do not require this 1-of-n honesty assumption. However,
introducing such new opcodes would require a Bitcoin soft fork. As of the time of writing this text, it
does not seem likely any of these proposals will make its way into Bitcoin Script any time soon. Hence,
in this paper, we focus on defining the Ark protocol purely with the means that are currently available
in Bitcoin Script. If a stronger covenant would eventually make its way into Bitcoin, our formalisation
of the Ark protocol can easily accommodate this covenant instead of the n-of-n multi-signature output
script. Such a covenant would improve the protocol in terms of non-interactivity and efficiency, but we
stress that it is in no way necessary for the correct functioning of Ark.

4 Ark Construction

In this section, we outline the Ark protocol. We consider one Ark operator O with secret-public key pair
(skO, pkO), as well as Ark users such as Alice and Bob, with respective secret-public key pairs (skA, pkA)
and (skB , pkB).

At the core of the Ark protocol is the use of virtual UTXOs, or VTXOs for short. These are unspent
transaction outputs that can be spent without an onchain footprint. We will see in Section 4.2 how this
can be done using Ark transactions. To ensure the proper functionality, a VTXO is a transaction output
with a very specific locking script. This locking script is a Taproot script, with at least one collaborative
and one unilateral script path. As we will see, this allows the owner of a VTXO to either spend the
VTXO in collaboration with the Ark operator or spend it without the Ark operator.

Definition 4.1 (Virtual UTXO / VTXO). A virtual UTXO, or VTXO, held by the VTXO holder with
an Ark operator O, is an unspent transaction output vtxo := (value, vtxoLockScript) where the locking
script vtxoLockScript is a Taproot locking script such that

• the key path is unspendable,

• there is at least one collaborative script path, i.e., a script path that

– requires the signatures of both the VTXO holder and O, and

– can be delayed by an absolute timelock,

• there is at least one unilateral script path, i.e., a script path that

– does not require the signature of O,

– must be delayed by a relative timelock tv which is at least as long as a minimum delay deter-
mined by O.

We say that a VTXO is spent collaboratively, if it is spent by satisfying a collaborative script path (giving
a corresponding witness wcollab). Similarly, a VTXO is spent unilaterally, if it is spent by satisfying a
unilateral script path (giving a corresponding witness wunilat).

The simplest example of a VTXO would be the equivalent of a single-signature output, i.e., an amount
that the VTXO holder Alice can spend by providing a signature. The locking script of this VTXO with
operator O would then be:

vtxoLockScript = Taproot
(
False; checkSigpkO⊕pkA

, checkSigpkA
∧ relTimelock(tv)

)
.

In this case, the collaborative witness would be wcollab = σO⊕A, and the unilateral witness would be
wunilat = σA.

We can now proceed with describing Ark’s core functionality: transaction batching, allowing us to
reduce many VTXOs to one single onchain output, called a batch. Next, we explain how Ark users can
transact offchain with these VTXOs, spending existing VTXOs and creating new VTXOs in the process.
Through batch swapping, these newly created VTXOs can be swapped atomically for fresh VTXOs that
are part of a new batch. This batch swapping will motivate the structure of so-called commitment
transactions, which will be the only onchain footprint. We then add to that structure to allow users to
board and exit the Ark. Finally, we formalise the protocol’s operations step-by-step.

7

4.1 Transaction Batching

As indicated by the name, VTXOs are intended to be virtual. Although their construction allows them
to be turned into a UTXO at any point in time via the unilateral exit path, this will optimistically never
happen. If a VTXO holder wishes to claim the funds in the VTXO onchain, the preferred way to do
so will be by collaborating with the operator, as we describe in Section 4.5. Based on this insight, we
can devise a structure that encapsulates multiple VTXOs with a minimal onchain footprint, while still
allowing—in the worst case—every VTXO holder to exit unilaterally. This structure is called a batch. It
is simply a transaction output created and funded by the operator, that can only be spent in two ways,
either through a sweep path that allows the operator to claim back the entire output, or through an unroll
path that splits the single output into the constituent VTXOs according to a so-called virtual transaction
tree (VTXT). A virtual transaction is just a regular Bitcoin transaction that will optimistically never go
onchain.

Definition 4.2 (Virtual transaction tree). A virtual transaction tree (VTXT) is a directed rooted tree,
given by the ordered pair G = (V,A), where V is a set of virtual transactions (the nodes), and A is a set
of ordered pairs of virtual transactions (the edges), such that, for every v ∈ V and every i ∈ v.inputs,
there exists an edge (u, v) ∈ A such that u = i.prevTx. There is moreover exactly one virtual transaction
r ∈ V such that there are no edges a ∈ A of the form (u, r), where u ∈ V . This r is called the root. Any
ℓ ∈ V for which there are no edges of the form (ℓ, u) in A (for u ∈ V) are called leaves.

Definition 4.3 (Batch). A batch is a transaction output which is locked by a taproot script batchScript
with an unspendable key path and exactly two script paths:

• a sweep path that allows the Ark operator to claim the entire output after a time Te, which we call
the batch expiry, and

• an unroll path that specifies spending according to a VTXT with root spending the full batch, where
each leaf of the VTXT has a VTXO as its only output, and where the remaining nodes of the VTXT
are virtual transactions that have batches as their only outputs.

Remark 4.4. A batch essentially allows multiple VTXO holders to specify how to distribute the value
of the batch amongst them.

Remark 4.5. The structure of the VTXT is enforced by a covenant, ensuring that the batch can only be
spent according to the VTXT. When we emulate the covenant by using an n-of-n multi-signature lock
(using for example Musig2), the operator needs to coordinate a signing session with all involved VTXO
holders, producing for each node in the VTXT the appropriate signature. Multiple design choices could
be made here. One option could be having all involved VTXO holders sign every virtual transaction.
Alternatively, we could have each VTXO holder sign only those transactions on a path to their respective
VTXOs, as shown in Figure 2. This approach decreases the interactivity requirement, as fewer signers
are needed, without sacrificing safety when assuming rational signers. Indeed, for a virtual transaction
vtx spending an output with value

∑n
i=1 vi, the sub-VTXT starting from vtx will specify how to divide

the output into VTXOs with values (vi)
n
i=1, held by their respective holders {1, . . . , n} (who we assume

to be distinct for simplicity). Any alternative distribution of funds (v′i)
n
i=1 implied by another sub-VTXT

will necessarily have v′j < vj for some j ∈ {1, . . . , n}. This (rational) signer j will not agree to sign
the transactions in this alternative sub-VTXT. Hence, besides the operator, we do not require any signer
outside of {1, . . . , n}, i.e., any other VTXO holder that does not have vtx on its path from the batch to
its VTXO.

The purpose of the batch expiry will become clear in Section 4.4. For now, it is important to note
that every VTXO holder who knows the path of virtual transactions in the VTXT that spends from
the original batch to eventually create the holder’s VTXO can broadcast this path onchain. In the—
hopefully rare—event of a unilateral exit, the burden of exiting falls on the VTXO holder who wants to
exit, as this user needs to broadcast the appropriate virtual transactions onchain. An obvious example
of a VTXT would be a binary tree, as the one that can be found in Figure 2. In that setting, VTXO
holder U1 would have to broadcast the transactions with output values (v1 + v2, v3 + v4), (v1, v2) and v1
to exit unilaterally. Notice in particular that the user must pay the corresponding onchain transaction
fees. This exit cost may prove to be a significant portion of the VTXO value.

Remark 4.6. Realise that the VTXT structure allows a VTXO holder to exit unilaterally, without
having any other VTXOs ending up onchain. This will be of key importance to batch swap VTXOs.

8

Remark 4.7. The VTXT is not limited to the aforementioned binary tree. Many structures are possible,
all with their own advantages and disadvantages regarding exit cost, storage requirements and interactiv-
ity.

4.2 Ark transactions

As discussed in the previous section, VTXOs are intended to remain offchain to allow for the offchain
execution of transactions. This is done via Ark transactions, which spend one or multiple VTXOs
encapsulated in a batch through the collaborative spending path, creating one or multiple new VTXOs.

Let us describe how the Ark transaction mechanism works through a basic example. Consider an
Ark with operator O, in which an Ark user Alice wants to send an amount p over to Bob. Alice holds a
VTXO vtxoA with O in a batch. This VTXO has a value a > p. Alice will construct an Ark transaction.
In Transaction 1, we show a general Ark transaction.

Transaction 1: A general Ark transaction.

Inputs Witnesses Outputs
vtxoi,1 w1

collab vtxoo,1
vtxoi,2 w2

collab vtxoo,2
...

...
...

vtxoi,n wn
collab vtxoo,m

For our simple example, the Ark transaction would be Transaction 1 with n = 1, vtxo1,1 = vtxoA,
w1

collab = σO⊕A, and possibly three output VTXOs, a VTXO vtxoB with amount p spendable by Bob,
a change VTXO vtxoA′ returning the change a′ back to Alice, as well as a third VTXO paying a fee f
to the operator.

Alice unlocks the input in Transaction 1 using the collaborative path, signing the Ark transaction
and requesting O to sign as well. Once O signed too, the transaction is completed and sent to Bob.

Informally, we could say that Bob now holds a VTXO of his own, vtxoB . Observe that Bob is not
required to hold any prior funds in the Ark or on the Bitcoin blockchain to receive this VTXO. However,
one may argue in two ways that Bob does not really hold a VTXO vtxoB yet.

First, Bob cannot turn vtxoB into a UTXO via the VTXO’s unilateral exit path whenever he wants.
The only thing he could do is to broadcast the Ark transaction he received from Alice onchain, as soon as
the input of Transaction 1 would appear onchain. This would be the case if Alice were to exit unilaterally
with vtxoA. Either way, Bob must constantly monitor the blockchain to prevent Alice from claiming
the funds from vtxoA. We propose a solution to this. Recall that Alice being able to exit unilaterally
amounts to her holding several virtual transactions in the VTXT of the batch vtxoA is a part of. If
Alice were to send all these transactions over to Bob, Bob would now also be able to exit unilaterally by
posting all these transactions to put vtxoA onchain, as well as the subsequent Ark transaction to obtain
vtxoB .

However, a second, perhaps bigger problem remains even with this patch. Bob has to trust Alice
and the operator not to collude and sign another Ark transaction double-spending vtxoA. Since the Ark
transaction is virtual, Alice and a rational operator could theoretically spend the same VTXO arbitrarily
many times. If Alice were to take vtxoA onchain, only one of those Ark transactions could be included
onchain. In the next section, we will describe how both problems can be solved by batch swapping vtxoB
for a fresh VTXO that will be part of a batch confirmed onchain.

4.3 Batch Swaps

To finalise the Ark transaction from Alice to Bob, Bob can swap vtxoB atomically for a new VTXO. We
call this batch swapping a VTXO, as a user is swapping a VTXO part of one batch for a new VTXO in
a future batch. In our previous setting, batch swapping vtxoB would mean that Bob does not need to
wait for Alice to unilaterally exit with vtxoA to post the Ark transaction he received and turn vtxoB
into a UTXO with value b, and that he does not have to trust the operator not to collude with Alice.
To enable this, Bob’s new VTXO, which we will refer to as vtxoB′ , should also be part of a batch. This
batch will serve as an onchain confirmation that Bob indeed owns a virtual output with value b.

As mentioned earlier, batch swapping a VTXO is essentially an atomic swap. Bob will give vtxoB
to the operator, and in return, the operator will give vtxoB′ to Bob. This happens in such a way that

9

either both transfers succeed or both transfers fail.
A batch swap begins with Bob sending a request to the operator to batch swap vtxoB . The operator

will construct a transaction like the one in Transaction 2, which, as we will see in Section 4.4, is a very
simple commitment transaction. This transaction spends some of the operator’s own onchain funds, and
has two outputs. One with value b′, requiring a signature from both Bob and the operator, and one
anchor output that can be spent by the operator. This output has a dust value ε, and is crucial to ensure
the atomicity of the batch swap.

Transaction 2: A very simple commitment transaction.

Inputs Witnesses Outputs
outO σC

O (b′, checkMultiSig2,2;pkO,pkB
)

(ε, checkSigpkO
)

The operator also creates a virtual transaction that spends from the first output in Transaction 2
and has as output vtxoB′ :

Transaction 3: Virtual transaction spending from the commitment transaction in 2.

Inputs Witnesses Outputs
(b′, checkMultiSig2,2;pkO,pkB

) [σ′
B , σ

′
O] vtxoB′

The operator signs this virtual transaction and shares it with Bob, together with the anchor output.
Bob can now construct a forfeit transaction:

Transaction 4: Forfeit transaction.

Inputs Witnesses Outputs
vtxoB wB

collab (b, checkSigpkO
)

(ε, checkSigpkO
) σF

O

This is essentially an Ark transaction that spends vtxoB and gives b to the server, conditional on
Transaction 2 being included onchain, i.e., vtxoB′ being turned into a UTXO. Bob signs Transaction 4
and sends it to the operator. The corresponding SIGHASH flag is SIGHASH ALL. Bob’s signature is only
valid for this specific forfeit transaction, containing the anchor output. In other words, the forfeit
transaction is only valid if Transaction 2 is included onchain.

The operator can now safely broadcast Transaction 2, as the anchor output enables atomicity. Indeed,
if Bob somehow is able to turn vtxoB into a UTXO, the operator can broadcast the forfeit transaction
and claim b. On the other hand, the operator is unable to claim vtxoB using the forfeit transaction as
long as Transaction 2 is not included onchain.

Bob has successfully swapped vtxoB for vtxoB′ , which he can now unilaterally exit with by posting
Transaction 3. Bob no longer needs to monitor the blockchain in case Alice decides to turn vtxoA into a
UTXO. If this happens, it is now the operator’s responsibility to broadcast the Ark transaction creating
vtxoB , as well as the forfeit transaction to claim back what are now his funds. Bob also no longer runs
the risk of Alice double-spending vtxoA. Again, this is because the operator will now no longer agree to
double-spend vtxoA, since it is the operator who eventually loses out because of that.

This construction understandably seems cumbersome. However, it is not limited to dealing with just
one VTXO. Indeed, the first output of Transaction 2 is just a batch containing one VTXO (where the
VTXT consists only of Transaction 3). We can increase the size of this batch, including other VTXOs
that may also have been created through batch swaps.

As a final side note, the current construction also locks the funds the operator puts in, as a signature
from Bob is also required. We will see in the next section how these funds will eventually be unlocked
to be claimed by the operator again.

4.4 Commitment transactions

Transaction 2 offers a natural way to contain batches as its outputs. Moreover, the second output of
Transaction 2 enables to swap VTXOs atomically. This second output takes on the role of a so-called
connector.

10

Definition 4.8 (Connector). A connector is a transaction output which is locked by a taproot script
connectorScript with an unspendable key path and a script path that specifies spending according to a
VTXT where the root spends the full connector, and where each leaf of the VTXT has an anchor output
as its only output. The remaining nodes of the VTXT are virtual transactions that have connectors as
their only outputs.

In the Ark protocol, a connector thus encapsulates all the anchor outputs serving as inputs to forfeit
transactions that can only be included onchain if the commitment transaction containing that connector
is included onchain. Unlike a batch, the virtual transactions in a connector are only signed by the
operator. We can now formally introduce the commitment transaction.

Definition 4.9 (Commitment transaction). A commitment transaction is a transaction broadcast by
the Ark operator with at least one batch and one connector as outputs.

Transaction 5: Commitment transaction.

Inputs Witnesses Outputs
outO σC

O (b, batchScript)
(ε′, connectorScript)

A commitment transaction may contain multiple batches and connectors. Additionally, the commit-
ment transaction may contain inputs and outputs related to users joining, or boarding, and leaving the
Ark. We will specify these procedures and how they may alter the commitment transaction in the next
section.

4.5 Boarding and leaving the Ark

Boarding. Consider a user Alice with some onchain funds locked in a UTXO outA. Alice can join,
or board the Ark via a two-step process. First of all, Alice will construct and broadcast the boarding
transaction

Transaction 6: Boarding transaction.

Inputs Witnesses Outputs
outA σA out′A

where the locking script of the output out′A is given by

Taproot
(
False; checkSigpkO⊕pkA

, checkSigpkA
∧ relTimelock(tb)

)
That is, a Taproot script with an unspendable key path and two script paths. The first script path
is an exit path, which allows Alice to unlock her funds after a timeout period tb, and the second is a
cooperative path, where Alice and the operator can spend the funds together.

Alice can now send a boarding request to the operator, who will first verify that out′A cannot be spent
by Alice alone, and then create a VTXO vtxoA for Alice in a batch of the next commitment transaction.
In return, the UTXO out′A is added as an input to this commitment transaction via the cooperative
path of out′A.

In case Alice would not want to board the Ark after all, she can either spend out′A via the exit path
after the timeout, or cooperate with the operator to spend out′A for a new UTXO that can be spent by
Alice only.

Leaving. Alice now holds a VTXO vtxoA, which is part of a confirmed commitment transaction batch.
Therefore, she is able to leave the Ark in two ways: unilaterally and collaboratively. The former does
not require any interaction with the Ark operator, and boils down to Alice broadcasting each virtual
transaction in the VTXT that lies on a path from the batch root to the batch leaf with output vtxoA.

Alternatively, Alice can leave by collaborating with the operator. To this end, Alice will batch swap
vtxoA, but instead of receiving another VTXO in the next commitment transaction, the server will add
an extra output to the commitment transaction that can be spent directly by Alice. Apart from that, the
batch swap will proceed just as in Section 4.3, with the operator receiving a signed forfeit transaction,
in case Alice tries to exit with vtxoA unilaterally.

11

4.6 Protocol operations

We can formally summarise the operations performed as part of the Ark protocol in Sections 4.2 to 4.5
as Operations 1 and 2. The former describes how a user Alice can make an Ark transaction to Bob, and
the latter bundles all the steps needed to construct a valid commitment transaction. Multiple users will
be involved in Operation 2, each making one or more requests. There are three types of requests:

• Boarding requests: A user U owns a UTXO and shares with the operator a confirmed boarding
transaction boarding tx, with the aim to swap the UTXO for a VTXO.

• Leaving requests: A user U holds a VTXO and specifies to the operator that he wants to exit that
particular VTXO, effectively swapping it for a UTXO.

• Batch swap requests: A user U holds a VTXO and specifies to the operator that he wants to batch
swap that particular VTXO for a new VTXO.

We denote by B,L, S the sets of boarding, leaving, and batch swap requests, respectively. An arbitrary
request is denoted by r, and we denote by u(r) the user that submitted request r.

Given the requests B,L, S the operator will construct a commitment transaction commitment tx,
which has as inputs the outputs of the boarding transactions r ∈ B, as well as an additional UTXO utxoO
coming from the operator to cover the rest of the required funds. The outputs of commitment tx will be
a batch and a connector, which we abstract by β := β(B∪S) and γ := γ(L∪S), respectively. The batch
β will implicitly define a VTXT (V,A). We moreover specify a function ς : V → P(u(B)∪ u(S)∪ {O})4,
which tells us for each virtual transaction in the VTXT which subset of u(B) ∪ u(S) ∪ {O} should
sign that virtual transaction. This function is uniquely determined by the design choice discussed in
Remark 4.5. We will consider a signing session as a black box, indicating which virtual transactions and
which parties are involved, and assuming that at the end of the signing session, every involved party has
a valid signature that allows that party to broadcast that transaction onchain. Finally, the connector
γ will also implicitly define a VTXT, which will have |L| + |S| leaves, defining an anchor output εr for
each r ∈ L ∪ S.

Running Operation 2 will lead to a commitment transaction being confirmed onchain, if everyone
involved is responsive5. To summarise, we show all the onchain and virtual transactions and their
dependencies together in Figure 2, for a very simple scenario similar to the one described in Figure 1. U1

boards the Ark via a boarding transaction. The operator then uses these funds, together with some of its
own funds, to fund the next commitment transaction. U4 made a request to swap a VTXO he received
as output from an Ark transaction, and U5 made a request to leave the Ark. Hence, the commitment
transaction will contain a batch, which includes amongst others a VTXO for U1 and a fresh VTXO
for U4, an output that can be spent by U5 immediately, and a connector, enabling amongst others the
operator to claim the old VTXOs of U4 and U5, would these ever go onchain. Keep in mind that an
actual commitment transaction will most likely contain (multiple) batches with more VTXOs each.

5 Security and Scalability Considerations

Having described the protocol in detail, we can now informally argue under which conditions the Ark
protocol satisfies the security and scalability properties introduced in Section 2.3.

(NS) Ark Onramp Safety: A rational operator would never include a VTXO in a commitment trans-
action which does not spend the output from a corresponding boarding transaction, as this would
amount to the operator funding this VTXO himself and effectively giving away the corresponding
funds to the VTXO holder. A malicious operator could do this and would be indifferent about
giving away the funds to the corresponding user, but the user could never be at a loss.

(NL) Ark Onramp Liveness: This follows immediately from the construction of the boarding trans-
action, regardless of whether the operator is rational or malicious.

(AS) Ark Safety: Recall that Ark transactions are only considered final once the commitment trans-
action containing the outputs of that Ark transaction is confirmed onchain. This commitment

4We denote by u(B) the set {u(r) : r ∈ B} of all users who made a boarding request (similar notation for L and S).
5In practice, we would assume that everyone making a request is online and will respond. If this is not the case,

Operation 2 will fail. It can be repeated, now excluding the request(s) from the user who did not respond.

12

transaction is funded by the operator. Hence, a double-spend would imply the operator funding
two times the transaction amount, while only receiving one time the transaction amount through
expiry of the VTXO that has been spent. A rational operator would thus never agree to double-
spend, as this would come at a loss for him. A malicious operator might agree, but would once
again be the only one at a loss.

(AL) Ark Liveness: A rational operator needs to be incentivised to run an Ark, which can be done
through Ark transaction fees, and to run it honestly, i.e., without censoring transactions. For now,
the only argument we can give is that if an operator were to censor transactions, users would stop
using that Ark and go elsewhere, meaning the operator would lose out on future transaction fees.
It is a topic for future research to formalise and quantify these incentives.

(FS) Ark Offramp Safety: In the case of a unilateral exit, the user must publish the corresponding
chain of virtual transactions (ending in the VTXO) onchain. For a collaborative exit, it would
not be rational for the operator to add a UTXO for the exiting user without making sure the old
VTXO is forfeited, as the exiting user could now also claim the old VTXO, entailing a loss for the
operator. Once again, a malicious operator would not care about this loss, but the users are never
at risk of losing funds.

(FL) Ark Offramp Liveness: Each VTXO is part of a batch in a commitment transaction. The
user can exit unilaterally and be sure that this VTXO cannot be double-spent, as the user signed
off on the commitment transaction. In the case of a collaborative exit, because the user correctly
forfeited the old VTXO for a specific commitment transaction, the operator has no way to somehow
claim both the old VTXO and the new UTXO. If an operator broadcasts this specific commitment
transaction, the user will claim the funds onchain. If not, the user will retain the original VTXO
until it expires. This holds true for both a rational and malicious operator. Of course, it is
preferable that an operator does actually broadcast the commitment transaction, as the VTXO
will eventually expire, forcing the VTXO holder to either exit unilaterally (which can be done
regardless of the operator’s actions) or to lose the funds. In practice, a similar argument as for
(AL) could be made to show that a rational operator will, in fact, be incentivised to broadcast
the specific commitment transaction. Rational operators do not want to lose out on transaction
fees by users leaving because of commitment transactions not being broadcast. Once again, this
argument requires a more formal treatment, outside of the scope of this litepaper.

The balance security follows from the above properties, as long as To < Te. Recall that To was the
period with which we assumed the users to come online. From the perspective of the user, as long as a
VTXO is confirmed in a batch, the user will come online before the batch expires, and is then able to
exit with that VTXO, either unilaterally or collaboratively. From the operator’s perspective, the above
properties, together with the feature that all batches will expire after Te, ensure that an operator will
eventually regain full custody of his funds.

As for the scalability properties, we note the following.

• Constant execution cost: Offchain transactions are finalised with the appropriate batch swaps.
The only on-chain footprint is consequently a commitment transaction containing the corresponding
batch.

• Constant exit cost (optimistic): If the operator is online, the exiting user can perform a
collaborative exit to obtain a UTXO in the next commitment transaction.

• Logarithmic exit per-VTXO cost (pessimistic): In the worst case, an Ark user will exit a
VTXO unilaterally, which means this user needs to broadcast virtual transactions onchain, spending
the batch output of the corresponding commitment transaction, to eventually claim the VTXO
onchain. Assuming a binary tree-like structure for the VTXT specified by the batch output,
containing t VTXOs, there will be O(log t) virtual transactions that need to be broadcast.

6 Applications

We briefly touch on some potential applications of Ark’s transaction batching. The most straightforward
application would be to perform offchain payments with no prior setup requirements for the receiver.
In Section 4.2, we already described how to transact within an Ark by considering a simple payment

13

from Alice to Bob. In order to receive funds, Bob only needed to receive the Ark transaction from
Alice and batch swap the newly created VTXO with the operator. This is in contrast to, for example,
the Lightning Network, where to receive funds, one must have set up a payment channel beforehand,
incurring an onchain cost. Bob’s wallet only needs to be Ark-aware to receive VTXOs and subsequently
batch swap them. From this point onward, he is capable of everything any other VTXO holder is capable
of.

In general, applications of Ark leverage the fact that virtual transactions are essentially offchain
Bitcoin transactions, and thus also employ Bitcoin Script to formulate spending conditions on VTXOs.
With some extra caution, this enables more complex constructions, such as escrows, discreet log con-
tracts, or unidirectional payment channels [4], to be built on Ark. This caution concerns primarily the
requirement to properly time any timelocks present in the construction with regards to the batch expiry
time.

7 Discussion and Limitations

Centralisation of Ark Operator. The Ark protocol fundamentally relies on a single operator to co-
ordinate offchain transactions, manage liquidity, and produce commitment transactions. This introduces
a centralisation vector that may be undesirable in the context of Bitcoin’s decentralised ethos. While
the protocol ensures that users can unilaterally exit the system and retrieve their funds, the reliance
on a central party to enable efficient offchain transfers means that the operator remains a potential
single point of failure. If the operator becomes unavailable or behaves maliciously (e.g., by censoring
users), users may suffer from degraded performance or increased costs associated with unilateral exits.
Future work could explore designs involving multiple operators, either in a federated setting or through
cryptographic coordination, to mitigate this centralisation risk. It could also investigate to what extent
the responsibilities of the operator—liquidity providing, signing, and batching—could be split across
different entities.

Preconfirmation. If an Ark user were to trust the operator not to collude with previous VTXO owners
to double-spend, that Ark user would theoretically not need to batch swap the VTXO he received
from an Ark transaction. Instead, he could spend this VTXO instantly in a new Ark transaction.
Repeating this would lead to a directed acyclic graph (DAG) of Ark transactions, with batch swaps
occurring only at the leaves. We sketch in more detail how this would look in Appendix A. Although
rational assumptions and settlement mechanisms reduce the scope for abuse, this ”instant payment”-
model inherently trades off security for performance in the preconfirmation variant. Future research
might explore cryptographic means (e.g., succinct fraud proofs or threshold attestations) to reduce the
required trust in this preconfirmation variant of the Ark protocol. Ideally, this future research will enable
the preconfirmation variant to satisfy the security properties of Section 2.3 while assuming a rational
operator.

Liquidity Requirements. The operator must provide a substantial amount of upfront capital to
maintain liquidity within the Ark system. This requirement may pose a barrier to entry and raises
questions regarding capital efficiency and long-term sustainability. Furthermore, the operator bears
the financial risk of fronting liquidity for users’ benefit, potentially without immediate compensation.
The protocol partially addresses this via transaction fees and the ability to sweep expired VTXOs.
Nonetheless, more work is needed to quantify liquidity requirements under realistic usage patterns and
to design incentive mechanisms (e.g., fee markets, operator bonding) that attract sufficient capital while
discouraging misbehaviour.

Onchain cost of unilateral exit. In case of a unilateral exit, a user is responsible for broadcasting
the appropriate virtual transactions to claim his VTXO onchain. The user will consequently have to
pay onchain transaction fees, which may add up to a significant portion of the VTXO value the user is
trying to claim onchain. As a result, holders of smaller VTXOs may be priced out of exiting unilaterally.
Future work could study different VTXT designs that may minimise these exit costs for certain users.
For example, one might try—if possible—to put smaller VTXOs not too deep in the VTXT, or having
a small VTXO share most of its path with a larger VTXO such that in case both exit the holder of the
large VTXO can cover most of the exit cost.

14

Bank Run Scenario. Related to the previous point, a worst-case limitation arises in the case of a
bank run, where many users attempt to exit the Ark simultaneously. In such a scenario, the proto-
col mandates that users publish their corresponding virtual transactions onchain, resulting in a surge
of transactions proportional to the number VTXOs in the considered batch. Given Bitcoin’s limited
throughput, such a spike may cause significant congestion and delay exits, undermining user confidence.
Although the protocol ensures eventual exits (i.e., liveness), the associated costs and delays may be sub-
stantial. Techniques such as rate-limited exits, time-staggered batching, or offchain exit markets (where
users can sell exit rights) might alleviate this issue and constitute promising directions for future work.

8 Conclusion

Ark is a transaction batching protocol that enables executing multiple Bitcoin transactions offchain and
batching them together in a single onchain transaction output. This is achieved by introducing virtual
UTXOs (VTXOs), a novel abstraction that allows users to transact offchain while retaining the ability
to unilaterally settle onchain, and connectors, ensuring atomicity while swapping said VTXOs. As a
result, Ark enables onchain constructions, such as payment channels and escrows, to be lifted offchain,
marking a new chapter in Bitcoin scaling solutions.

References

[1] Lukas Aumayr, Zeta Avarikioti, Robin Linus, Matteo Maffei, Andrea Pelosi, Christos Stefo, and
Alexei Zamyatin. BitVM: Quasi-turing complete computation on bitcoin. Cryptology ePrint Archive,
Paper 2024/1995, 2024.

[2] Christian Decker and Roger Wattenhofer. A fast and scalable payment network with bitcoin duplex
micropayment channels. In Stabilization, Safety, and Security of Distributed Systems: 17th Interna-
tional Symposium, SSS 2015, Edmonton, AB, Canada, August 18-21, 2015, Proceedings 17, pages
3–18. Springer, 2015.

[3] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis and
applications. Journal of the ACM, 71(4):1–49, 2024.

[4] Mike Hearn and Jeremy Spillman. Contract. https://en.bitcoin.it/wiki/Contract, 2023. Ac-
cessed: April 2025.

[5] Gleb Naumenko and Antoine Riard. Coinpool: efficient off-chain payment pools for bitcoin.

[6] Jonas Nick, Andrew Poelstra, and Gregory Sanders. Liquid: A bitcoin sidechain. Liquid white paper.
URL https://blockstream. com/assets/downloads/pdf/liquid-whitepaper. pdf, 2020.

[7] Jonas Nick, Tim Ruffing, and Yannick Seurin. MuSig2: Simple two-round schnorr multi-signatures.
Cryptology ePrint Archive, Paper 2020/1261, 2020.

[8] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-chain instant pay-
ments, 2016.

[9] Ruben Somsen. Statechains: Off-chain transfer of utxo ownership, 2018.

A Preconfirmation

As mentioned in Section 7, one could immediately after receiving a VTXO from an Ark transaction, spend
this VTXO again in another transaction. The VTXO is consequently not being confirmed through a
batch swap, but remains in what one could informally call a preconfirmation state. This could create a
sequence of Ark transactions spending preconfirmed VTXOs, until someone decides to batch swap the
received VTXO.

Recall that spending a VTXO through an Ark transaction is a collaborative spend of that VTXO
and thus requires a signature from the operator. Hence, a malicious user Alice would not be able to
double-spend a preconfirmed VTXO already spent in a transaction to Bob, as long as the operator is

15

https://en.bitcoin.it/wiki/Contract

honest. Alice could still exit this preconfirmed VTXO unilaterally, but because the honest operator and
Bob both know the Ark transaction spending that VTXO, Bob can claim the funds. Of course, the
operator and/or Bob must monitor the mainchain for this.

Assuming an honest operator is a significant trust assumption. As discussed in Section 7, future work
could investigate whether such a preconfirmation mechanism could also be achieved securely assuming
a rational operator. This should make use of the fact that a double-spend as described above would be
detectable. If it could be proven that the operator misbehaved, the only problem—which is by no means
trivial—would be to devise a punishment mechanism that would disincentivise the rational operator from
colluding in the first place.

We claim that such a deviation from the protocol by the operator is indeed detectable. We argue
this informally for two cases:

• Consider a malicious user Alice colluding with a rational operator, and two honest users Bob and
Charlie. Assume that Alice spends her preconfirmed VTXO vtxoA first in a transaction to Bob,
and then double-spends it, colluding with the operator, in a transaction to Charlie. Now, Bob and
Charlie could expose the operator by both coming forward and showing that the operator signed
off on two Ark transactions spending vtxoA.

• Alternatively, consider a malicious user Alice colluding with a rational operator, and one honest
user Bob. Assume that Alice spends her preconfirmed VTXO vtxoA in a transaction to Bob,
who receives vtxoB , and then double-spends vtxoA by sending it to herself (for example by batch
swapping it). Assuming that the rational operator allowed Alice to batch swap, it cannot allow Bob
to batch swap vtxoB . Indeed, this would come at a loss for the operator. If we assume moreover
that Alice gave all the virtual transactions spending from the batch output to obtain vtxoA, Bob
is able to exit with vtxoB unilaterally. Since Bob is not getting vtxoB batch swapped, he will exit
unilaterally. This would, however, again come at a loss for the operator, as the operator also funded
Alice’s fresh VTXO that came out of batch swapping vtxoA. The operator would be forced to
either take the loss, or to post the forfeit transaction for vtxoA which has now come onchain. This
would again prove that the operator signed two transactions spending vtxoA (the Ark transaction
and the forfeit transaction).

However, assuming that a certain class of users are willing to make this trust assumption, there
is still one problem left. With the preconfirmation mechanism, a forfeit transaction is only signed for
a VTXO that is batch swapped. Hence, a malicious user Mallory holding a VTXO vtxoM could, in
theory, make a chain of Ark transactions to himself, each time spending the new VTXO in the next
transaction, and batch swap the final VTXO vtxoM ′ or leave the Ark entirely. He could then exit the
VTXO vtxoM unilaterally. The operator now has to post all Ark transactions onchain, incurring onchain
fees to finally broadcast the forfeit transaction that spends vtxoM ′ . As the potential Ark transaction fees
will be significantly lower than the corresponding onchain fees, his griefing attack could allow Mallory to
illegitimately claim both vtxoM and vtxoM ′ , essentially stealing vtxoM ′ .value from the operator. To
prevent this from happening, we can introduce checkpoints. These additional virtual transactions will
allow the operator to claim a VTXO, unless the VTXO holder posts the Ark transaction that will be
spent from this checkpoint transaction.

Once again, suppose that Alice wants to send the amount p to Bob. Apart from the Ark transaction
defined earlier, she will also construct the checkpoint transaction:

Transaction 7: Checkpoint transaction.

Inputs Witnesses Outputs
vtxoA wcollab (p, Taproot(False; checkSigpkO⊕pkA

, checkSigpkO
∧ absTimelock(Te)))

Note how the output can either be spent by Alice and the operator collaboratively or swept by the
operator as soon as the batch expires. Alice now signs only the Ark transaction and passes both ark tx

and checkpoint tx to the operator. The operator verifies the scripts, signs both, and sends the signed
transactions back to Alice. Alice can now safely sign the checkpoint transaction and pass it to the
operator. In the earlier setting we sketched, where Mallory exited unilaterally with vtxoM , the operator
will now simply broadcast the appropriate checkpoint transaction, forcing Mallory to post the subsequent
Ark transaction. The operator will always force Mallory to post the next Ark transaction, until eventually
the operator can post the forfeit transaction. Mallory having to post all the Ark transactions to try to
claim vtxoM should incentivise Mallory not to try to claim both vtxoM and vtxoM ′ .

16

B Protocol Operations and Transaction Dependencies

Alice Operator Bob

construct ark tx

sign σa
A = SignskA

(ark tx)

ark tx, σa
A

verify ark tx and σa
A

sign σa
O = SignskO

(ark tx)

σa
O

verify σa
O

ark tx, σa
A, σ

a
O−−→

construct batch swap

request s for vtxoB

Operation 1: Alice performs an Ark transaction, sending funds to Bob. Upon receiving ark tx as
described underneath Transaction 1 and the appropriate signatures, Bob will request a batch swap as
specified in Operation 2 and only consider the transaction finalised once the corresponding commitment
transaction is confirmed onchain.

17

Operator Users

Boarding users made boarding requests r ∈ B,

where r can be interpreted as a boarding tx

Leaving users made leaving requests r ∈ L,

where r can be interpreted as a vtxo

Batch swap users made batch swap requests

r ∈ S, where r can be interpreted as a vtxo

Operator receives

B,L, S in aggregate

∀r ∈ B : verify that exit path of r is invalid

construct a commitment transaction commitment tx

with inputs r ∈ B and utxoO, and outputs

a batch β, specifying a VTXT (V,A),

a connector γ, specifying anchor outputs {εr}r∈L∪S ,

and UTXOs {utxor}r∈L

∀r ∈ B :
send commitment tx

and β to u(r)

∀r ∈ L :
send commitment tx

and γ to u(r)

∀r ∈ S :
send commitment tx,

β, and γ to u(r)

∀U ∈ u(B ∪ L ∪ S) : U verifies commitment tx

(Interactive) signing session for vtx, involving every party in ς(vtx)

After a successful session, everyone involved is capable of broadcasting vtx onchain with a valid signature

∀vtx ∈ V :

u(r) constructs forfeit txr with r, εr

as inputs and signs it, producing σF
r

forfeit txr, σ
F
r

∀r ∈ L ∪ S :

U signs commitment tx, producing σC
U

σC
U

∀U ∈ u(B) :

broadcast commitment tx using σC
O and {σC

U }U∈u(B)

to create the witnesses

Operation 2: Construction of a commitment transaction from boarding, leaving, and batch swap requests
B,L, S respectively.

18

connector

batch

v′1

Operator funds

U1

pk1

+tb

pk1, pkO

pkO

v1 + v2

v3 + v4

O
pkO

≥ Te

pkO
...

pkO

≥ TepkO, (pki)
4
i=1

pkO

≥ Te

O

O

v1

v2

pkO

≥ Te

pkO

≥ Te

O

O
pkO, (pki)

2
i=1

pkO, (pki)
2
i=1 v1

v2

pkO

≥ Te

pkO

≥ Te

O

O

v1

v2

v3

v4

pkO, pk1

pkO, pk2

pkO, pk3

pkO, pk4

pk2

+tv

pkO, pk2

U2

...

pk4

+tv

pkO, pk4

U4

...

pk3

+tv

pkO, pk3

U3

...

pk1

+tv

pkO, pk1

U1

...

v4
pk4

+tv

pkO, pk4

U4

v5
pk5

U5

v5
pk5

+tv

pkO, pk5

U5

...

pkO
ε4

ε5

pkO

pkO

ε4

ε5

From previous batch/
output of Ark transaction

pkO

v4 + ε4
pkO

O

pkO

v5 + ε5
pkO

O

forfeit tx

forfeit tx

commitment tx

boarding tx

From previous batch/
output of Ark transaction

pkO, pk4

pkO, pk5

Figure 2: Transaction dependencies within the Ark protocol. Dashed transactions are virtual transactions
and optimistically never appear onchain. Recall that Te is the batch expiry, tv the minimum delay for a
unilateral VTXO exit, and tb the boarding transaction timeout period. The batch expiry is represented
as an absolute timelock, and this figure should be read assuming commitment tx is included in the Bitcoin
mainchain in a block we denote with time t = 0.

19

	Introduction
	Contributions

	Overview
	Assumptions
	Protocol Overview
	Security and Scalability Properties

	Background
	The Unspent Transaction Output (UTXO) Model
	Covenants

	Ark Construction
	Transaction Batching
	Ark transactions
	Batch Swaps
	Commitment transactions
	Boarding and leaving the Ark
	Protocol operations

	Security and Scalability Considerations
	Applications
	Discussion and Limitations
	Conclusion
	Preconfirmation
	Protocol Operations and Transaction Dependencies

